Simple modules and hereditary rings
نویسندگان
چکیده
منابع مشابه
On Projective Modules over Semi-hereditary Rings
This theorem, already known for finitely generated projective modules[l, I, Proposition 6.1], has been recently proved for arbitrary projective modules over commutative semi-hereditary rings by I. Kaplansky [2], who raised the problem of extending it to the noncommutative case. We recall two results due to Kaplansky: Any projective module (over an arbitrary ring) is a direct sum of countably ge...
متن کاملOn the Goldie Dimension of Hereditary Rings and Modules
We find a bound for the Goldie dimension of hereditary modules in terms of the cardinality of the generator sets of its quasi-injective hull. Several consequences are deduced. In particular, it is shown that every right hereditary module with countably generated quasi-injective hull is noetherian. Or that every right hereditary ring with finitely generated injective hull is artinian, thus answe...
متن کاملPublic Key Cryptography Based on Simple Modules over Simple Rings
The Diffie Hellman key exchange and the ElGamal oneway trapdoor function are the basic ingredients of public key cryptography. Both these protocols are based on the hardness of the discrete logarithm problem in a finite ring. In this paper we show how the action of a ring on a module gives rise to a generalized Diffie-Hellman and ElGamal protocol. This leads naturally to a cryptographic protoco...
متن کاملOn n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1968
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1968.26.627